Bacteria hijacked to ease drug manufacturing

Researchers have hijacked bacteria to ease drug manufacturing – a development that they believe will enable easier development of drugs at a much lower cost.

For decades, researchers have been eyeing ways to make drug manufacturing more affordable and sustainable than pharmaceutical makers’ current processes, many of which depend on either plant crops or petroleum. Using bacteria has been suggested as a good organic alternative, but detecting and optimizing the production of therapeutic molecules is difficult and time-consuming, requiring months at a stretch. In a new paper out this week in Nature Chemical Biology, the UT Austin team introduces a biosensor system, derived from E. coli bacteria, that can be adapted to detect all kinds of therapeutic compounds accurately and in mere hours.

The genetic code of bacteria can be easily manipulated to become factories for drug production. In a process called biosynthesis, the bacteria’s biological systems are harnessed to produce specific molecules as part of the natural cellular process. And bacteria can replicate at high speed. All they need to do the job is sugar.

Unfortunately, manufacturers have not had a way to quickly analyze different strains of engineered bacteria to identify the ones capable of producing quantities of a desired drug at commercial volumes — until now. Accurately analyzing the thousands of engineered strains on the way to a good producer can take weeks or months with current technology, but only a day with the new biosensors.

The biosensors developed in the latest study quickly and accurately determine the amount of a given molecule that a strain of bacteria is producing. The team developed the biosensors for several types of common drugs, such as cough suppressants and vasodilators, which are used to treat muscle spasms. Molecular images of the biosensors taken by X-ray crystallographers show exactly how they tightly grab onto their partner drug. When the drug is detected by the biosensor, it glows. Additionally, the team engineered their own bacteria to produce a compound found in several FDA-approved drugs and used the biosensors to analyze product output, in essence showing how industry might adopt biosensors to quickly optimize chemical manufacturing.

Related Articles

Back to top button